Complex Data Types
Hydrolix supports storing and indexing arrays and maps. The following table contains additional information on these data types:
Type | Description | Indexed by default? | Indexing exceptions | Stored as type | Nullable |
---|---|---|---|---|---|
array | An array of any one of the primitive or complex data types supported by Hydrolix | No (can be enabled via config) | Array of Arrays, Array of Doubles, Array of Maps | array | Yes |
map | A map containing key/value pairs of primitive or complex data types supported by Hydrolix | Yes | Map of Arrays, Map of Doubles, Map of Maps | map | Yes |
Within the transform schema, these types have an additional elements
object nested under the datatype
property. You can see examples of this within our example transform schemas for Maps and Arrays.
Elements
The elements
object defines the structure of the map or array and the subsequent datatypes that are contained within them. It uses the same settings as the parent object ( type
, format
, index
fields etc) to define how data should be treated.
Maps
Map keys and values must be homogenous types
While key type and value type can differ within a map, all keys and all values stored in a map must be of the same basic or complex
type
. The following are examples of valid and invalid transform schema and input data based on this concept:Invalid
// cannot create a map which accepts both (String, String) and (String, Int32) data [ { "name": "invalid_map_heterogenous", "datatype": { "type": "map", "elements": [ { "type": "string", "index": true }, { "type": "string", "index": true }, { "type": "string", "index": true }, { "type": "int32", "index": true } ] } } ]
[ { "invalid_map_heterogenous": {"key1": "value1", "key2": 2} } ]
Valid
// can instead create two maps within the transform, one which accepts (String, String) // and another that accepts (String, Int32) data [ { "name": "map_string_string", "datatype": { "type": "map", "elements": [ { "type": "string" }, { "type": "string" } ] } }, { "name": "map_string_int32", "datatype": { "type": "map", "elements": [ { "type": "string" }, { "type": "int32" } ] } } ]
[ { "map_string_string": {"key1": "value1"}, "map_string_int32": {"key2": 2} } ]
Maps are defined as structures containing {key:value}
pairs with the key
and the value
requiring discrete configurations. The following example transform schemas define columns of type map
.
Transform Example Schema
[
{
"name": "map_string_epoch",
"datatype": {
"type": "map",
"elements": [
{
"name": "string_key",
"type": "string"
},
{
"name": "epoch_value",
"type": "epoch",
"format": "us",
"resolution": "ms"
}
]
}
}
]
[
{
"name": "map_string_array",
"datatype": {
"type": "map",
"elements": [
{
"name": "string_key",
"type": "string"
},
{
"name": "array_value",
"type": "array",
"elements": [
{
"type": "string"
}
]
}
]
}
}
]
Query
The following is an example query against a map object of type map(string,uint64)
:
select mymap['{key}'] from {column} where mymap['{key}'] = 6288
Arrays
Arrays can only store one type
Values stored within an array must all be of the same basic or complex
type
.
Array of Maps
Hydrolix supports the use of the Array of Maps data type. The following example transform schemas define columns of type array
.
Transform Example Schema
[
{
"name": "array_map_string_string",
"datatype": {
"type": "array",
"elements": [
{
"name": "map_string_string",
"type": "map",
"elements": [
{
"type": "string"
},
{
"type": "string"
}
]
}
]
}
}
]
[
{
"name": "array_map_int_string",
"datatype": {
"type": "array",
"elements": [
{
"name": "map_int_string",
"type": "map",
"elements": [
{
"type": "int32"
},
{
"type": "string"
}
]
}
]
}
}
]
Indexing
Hydrolix has been designed to index by default in most cases. Turn off indexing of a column only when necessary. You can read more about indexing at Hydrolix in this blog post.
Enable/Disable
Enabling and disabling indexing is done by setting "index": true
or "index": false
within the output columns of the transform schema. You can read more about output columns within our Transform Structure documentation. The following example demonstrates how to enable or disable indexing:
"settings": {
"output_columns": [
{
"name": "indexed_array_column",
"datatype": {
"type": "array",
"index": true
}
},
{
"name": "not_indexed_array_column",
"datatype": {
"type": "array",
"index": false
}
}
]
}
Array
Supported Index Lookup Operations
Lookup Type | Array Type | Supported Functions |
---|---|---|
Array element lookup (example: arr_column[2] = ‘v1’ ) | String | = , like , iLike , in , empty() , isNull() , isNotNull() |
Integer | = , > , >= , < , <= , in , isNull() , isNotNull() | |
Datetime | = , != , > , >= , < , <= , in , isNull() , isNotNull() | |
Array lookup (example: arr_column = [‘v1’, ‘v2’, ‘v3’] ) | All | = , in , empty() , notEmpty() , hasAll() , hasAny() , has() |
Updated 2 months ago